NECK DISSECTION & NODAL STAGING

CHERIE-ANN NATHAN, MD, FACS
JACK W. POU ENDOWED PROF. & CHAIRMAN
DIRECTOR HEAD & NECK Feist-Weiller Cancer Ctr,
DEPT. OF OTOLARYNGOLOGY/HNS,
LSU HEALTH-SHV
HISTORY

• 1906: George Crile described the classic radical neck dissection (RND)
• 1933 and 1941: Blair and Martin popularized the RND
• 1975: Bocca established oncologic safety of the FND compared to the RND
<table>
<thead>
<tr>
<th>Proposed Classification, Ferlito et al, 2011</th>
<th>AAO-HNS Revised Classification, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND (I–V, SCM, IJV, CN XI)</td>
<td>Radical neck dissection</td>
</tr>
<tr>
<td>ND (I–V, SCM, IJV, CN XI, and CN XII)</td>
<td>Extended neck dissection with removal of the hypoglossal nerve</td>
</tr>
<tr>
<td>ND (I–V, SCM, IJV)</td>
<td>Modified radical neck dissection with preservation of the spinal accessory nerve</td>
</tr>
<tr>
<td>ND (II–IV)</td>
<td>Selective neck dissection (II–IV)</td>
</tr>
<tr>
<td>ND (II–IV, VI)</td>
<td>Selective neck dissection (II–IV, VI)</td>
</tr>
<tr>
<td>ND (II–IV, SCM)</td>
<td>NA</td>
</tr>
<tr>
<td>ND (I–III)</td>
<td>Selective neck dissection (I–III)</td>
</tr>
</tbody>
</table>
RELEVANT ANATOMY

FIGURE 2
Dark lines depict the boundaries of the submental (IA) and anterior compartment (VI) lymph nodes.

FIGURE 3
The boundaries dividing levels I, II, and V into sublevels A and B.
Definition of cN0 neck

• Absence of palpable adenopathy on physical examination

• Absence of visual adenopathy on CT or MRI or PET
Risk of micrometastases in the N0 neck

Specific cancers arising in selected mucosal sites have a low risk of metastases:

- T1 glottic carcinoma
- T1-2 lip cancers
- Thin (<4 mm) oral cavity cancers

Most carcinomas of the UADT have a minimum of 15% risk of metastases
Treatment options for the N0 neck

- Observation
- Neck dissection
- Radiation therapy
- Sentinel node dissection
ALGORITHM FOR TREATING THE NECK (SCC OF THE UADT)

PRIMARY TREATED SURGICALLY

- CLINICALLY POSITIVE DISEASE
  - THERAPUTIC NECK DISSECTION

- CLINICALLY NEGATIVE DISEASE
  - LOW RISK
    - NECK ACCESS REQUIRED
      - ELECTIVE NECK DISSECTION
  - HIGH RISK
    - DIRECT ACCESS POSSIBLE
      - ELECTIVE NECK DISSECTION
    - OBSERVATION
ALGORITHM FOR TREATING THE NECK POST-(Chemo)RADIATION THERAPY

PRIMARY TREATED WITH RADIOTHERAPY

CLINICALLY POSITIVE NODES
- LOW VOLUME DISEASE (N₁)
  - THERAPEUTIC NECK IRRADIATION
  - SALVAGE NECK DISSECTION
- HIGH VOLUME DISEASE (N₂-₃)
  - CXRT

CLINICALLY NEGATIVE NODES (N₀)
- LOW RISK
  - OBSERVATION
- HIGH RISK
  - ELECTIVE NECK IRRADIATION
SURGICAL CONSIDERATIONS

Incisions

Types of Incisions

A. Crile’s incision
B. Martin’s incision
C. Hockey stick incision
D. MacFee incision
Oral Cavity Cancer NO Neck

- T1-4,N0: 20-44% incidence of occult metastases
- T1-2: 15-20%
- A meta-analysis showed: A DSS advantage of END over observation (Fasunla AJ, Oral Oncol. 2011)
Delayed Recurrence in OCC

- Two thirds of the patients who develop delayed metastases had N2 or N3 disease.

- Randomized controlled trial, evaluating the effect on survival of elective node dissection versus therapeutic node dissection

- Absolute overall survival benefit of 12.5 % points and a disease-free survival benefit of 23.6 % points
Tumor thickness/Depth of Invasion

• The most common parameter to predict the risk of occult metastases: resulted in change in the staging system

• A meta-analysis showed that occult metastases are significantly more common when the thickness of the tumor is >4 mm (Huang SH et al, Cancer, 2009)
Neck levels at risk

• Levels I, IIA and III are at the highest risk for metastases

• Metastases to sublevel IIB are rare in the absence of nodes in other levels
• Incidence: as high as 15%, which may justify routine dissection of this level (*Byers, 1997, De Zinis LO, 2006*).

• Others demonstrate a low incidence (*Mishra, 2010, Bajwa, 2011*)

• Routine inclusion of level IV in SND may not be justified owing to the low incidence.
Level V

- General consensus that level V should not be included (Dias, 2006)
Oral cavity: contralateral metastases

- Floor of mouth
- Dorsal tongue, midline
- Ventral tongue
Larynx cancer metastases

• Supraglottis: rich lymphatic network with bilateral drainage levels II and III

• Glottis: sparse lymphatics unless disease extension (T2-4) with drainage to levels II-IV, and VI

• Subglottis: levels IV and VI
Larynx cancer metastases

• Levels II, III and IV commonly involved while levels I and V rarely involved.

• SND (II-IV) is the procedure of choice for N0 with neck recurrence rates as low as 1.7%.
Larynx cancer metastases: sub-level IIB

- IIB mets are uncommon (0-3%) in the N0 neck (Koybasioglu A, 2002; Coskun HH, 2004; Lim YC, 2006)

- Sparing IIB minimizes XI dysfunction

- IIB dissection is not indicated in N0 laryngeal cancer (Rinaldo, 2006).
Larynx cancer level IV mets

- Mets to level IV in clinically N0 disease is low (Cosken, 2004; Elsheikh MN, 2006)

- Omission of level IV dissection lessens the risk of chylous fistula and phrenic nerve injury

- Patients with glottic and supraglottic cancer should receive a SND (IIA-III), termed super-selective neck dissection (SSND) (Ferlito et al, 2006)
Oropharyngeal cancer metastases

• The risk of mets is high: overall incidence of 92%; 32% in patients with clinically N0 neck.

• Elective neck is indicated in the majority of the patients with a N0 neck.
Oro- and hypopharyngeal cancer

- Data is lacking for risk of mets by neck level since non-surgical measures are often preferred.

- Emergence of transoral laser and robotic surgery, further refinements of neck surgery may be feasible.
Oropharyngeal cancer

• Lymphatic drainage occurs to levels II-IV, the retropharyngeal nodes

• Dissection of levels II, III and IV would be appropriate for clinically N0 necks
Oropharyngeal cancer

• The majority of the metastases are found in levels II and III (Gross BC, 2013)

• Sublevel IIB metastases occur in 2.5-6% (Villaret AB, 2007; Valeri B, 2008; Gross BC, 2013)

• Among 348 patients Gross et al found sublevel IIB metastases in 2.5% of N0 necks and 25% of N+ necks
Oropharyngeal cancer: surgical treatment of the primary

- Dissection of sublevel IIB is recommended in patients with N+ disease, T3-4 primary, and tonsil primary
Oropharyngeal cancer

• Level IV metastases is rare in patients with clinically N0 neck (1% of the cases (Lodder WL, 2008))

• SSND of II and III may be appropriate for patients with clinically N0 disease
Bilateral Nodes in OPSCC

- Prevalence of bilateral mets was less than 15% but **only** in T1 tumors of the BOT and soft palate and in T1 and T2 tumors of the tonsillar fossa *(Olzowy et al)*
Oropharyngeal cancer

• Among patients with pathologic N+ disease: retropharyngeal metastases was 23%.

• The risk of retropharyngeal mets is negligible for T1-2, N0-N2a tonsil if negative CT/PET-CT (Moore et al).
Hypopharyngeal cancer

- The inferior portion of the hypopharynx and postcricoid regions drain into the paratracheal, paraesophageal and supraclavicular nodes.

- Lymphatic drainage from the posterior hypopharyngeal wall is to the retropharyngeal and midjugular nodes.

- Levels II-IV at greatest risk, skip metastases outside of these levels was very rare 0.3% (Candela et al)
Level VI

• Laryngeal, hypopharyngeal and (cervical) esophageal cancers: rate of metastasis ranges from 1 to 59%, depending on stage, subsite and extension

• It appears warranted to remove level VI in patients with N0 hypopharyngeal cancer
Hypopharyngeal cancer

- The incidence of IIB mets was 13.3% for clinically N+ and 0% for clinically N0 necks (Sakai et al).

- IIB may be preserved in N0 hypopharyngeal cancer.
Nasopharyngeal and sinus cancer

• NPC differs: neck dissection is only used for salvage of residual neck disease after (chemo)radiotherapy

• In SCC of the maxillary sinus, the rates of failure of the untreated N0 neck were high enough to warrant elective treatment especially for T3/T4 disease.
Lymphoscintigraphy: lymphatic mapping and sentinel node biopsy
Sentinel lymph node biopsy (SNLB) in oral cavity cancer

• SLNB has evolved as a possible alternative to the dilemma of observation versus END

• A decision analysis study identified the SNLB as the most cost-effective strategy in OCSCC (Govers TM et al, Oral Oncol. 2013)
Sentinel lymph node biopsy v/s SSND

- In 34.4% (42/122) early OCSCC with a positive sentinel node, additional non-sentinel node mets were found in only 35%.

- Furthermore, in the vast majority (93%) of the additional mets were in the same neck level.

- Thus super-selective neck dissection may be a reliable alternative to sentinel biopsy.
Super-selective Neck Dissection

An operative procedure designed to remove completely the fibroareolar tissue contents of two or less neck levels.
Super-selective neck dissection
When to perform salvage post-CRT neck dissection

- Palpable lymphadenopathy at 8 weeks
- CT/MRI evidence of a discrete mass at 8 weeks
- Positive FDG/PET scan at 12 weeks or later
- Clinical evidence of recurrent adenopathy
<table>
<thead>
<tr>
<th></th>
<th>20th century</th>
<th>21st century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>Elective, Therapeutic: planned salvage</td>
<td>Elective, Therapeutic: planned salvage</td>
</tr>
<tr>
<td>Classification</td>
<td>AAO-HNS nomenclature</td>
<td>Symbols</td>
</tr>
<tr>
<td>Extent</td>
<td>Radical and modified neck dissection</td>
<td>Selective and super-selective neck dissection; sentinel node biopsy</td>
</tr>
</tbody>
</table>
AJCC 8th edition TNM staging – What’s new?
CHANGES TO 8th EDITION AJCC CLASSIFICATION

- Oropharyngeal cancer
- Oral cavity
- Nasopharynx
- Unknown primary
- Neck
- Cutaneous SCC
OROPHARYNGEAL CANCER
OPSCC
OPSCC: *What changed?*

• The prognosis or behavior of HPV associated disease is not well reflected in the 7\textsuperscript{th} edition

<table>
<thead>
<tr>
<th>N CATEGORY</th>
<th>N CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in a single ipsilateral lymph node, 3 cm or smaller in greatest dimension and ENE-negative</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in a single ipsilateral lymph node larger than 3 cm but not larger than 6 cm in greatest dimension and ENE-negative; or metastases in multiple ipsilateral lymph nodes, none larger than 6 cm in greatest dimension and ENE-negative; or metastasis in bilateral or contralateral lymph nodes, none larger than 6 cm in greatest dimension and ENE-negative</td>
</tr>
<tr>
<td>N2a</td>
<td>Metastasis in a single ipsilateral lymph node larger than 3 cm but not larger than 6 cm in greatest dimension and ENE-negative</td>
</tr>
<tr>
<td>N2b</td>
<td>Metastasis in multiple ipsilateral lymph nodes, none larger than 6 cm in greatest dimension and ENE-negative</td>
</tr>
<tr>
<td>N2c</td>
<td>Metastasis in bilateral or contralateral lymph nodes, none larger than 6 cm in greatest dimension and ENE-negative</td>
</tr>
<tr>
<td>N3</td>
<td>Lymph node(s) larger than 6 cm</td>
</tr>
<tr>
<td>N3a</td>
<td>Metastasis in a lymph node larger than 6 cm in greatest dimension and ENE-negative; or metastasis in any lymph node(s) and clinically overt ENE-positive</td>
</tr>
<tr>
<td>N3b</td>
<td>Metastasis in any node(s) and clinically overt ENE-positive</td>
</tr>
</tbody>
</table>

OPSCC: Pathological N-Stage

<table>
<thead>
<tr>
<th>N CATEGORY</th>
<th>N CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>pN0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>pN1</td>
<td>Metastasis in 4 or fewer lymph nodes</td>
</tr>
<tr>
<td>pN2</td>
<td>Metastasis in more than 4 lymph nodes</td>
</tr>
</tbody>
</table>

*Table 5 is used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Manual, Eighth Edition (2017) published by Springer Science and Business Media LLC (springer.com) (Amin MB, Edge SB, Greene FL, et al, eds. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017, with permission).*
### OPSCC Clinical Staging


<table>
<thead>
<tr>
<th>T CATEGORY</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>NA</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>T3</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>T4</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>III</td>
</tr>
</tbody>
</table>

*Any M1 is stage IV.*

**TABLE 8.** Anatomic Stage and Prognostic Groups for *Clinical* and *Pathologic* TNM Grouping of Non-Human Papillomavirus-Associated (p16-Negative) Oropharyngeal Cancer, 8th Edition Staging Manual

<table>
<thead>
<tr>
<th>T CATEGORY</th>
<th>N0</th>
<th>N1</th>
<th>N2a,b,c</th>
<th>N3a,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td>IVA</td>
<td>IVB</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td>IVA</td>
<td>IVB</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td>IVA</td>
<td>IVB</td>
</tr>
<tr>
<td>T4a</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
<td>IVB</td>
</tr>
<tr>
<td>T4b</td>
<td>IVB</td>
<td>IVB</td>
<td>IVB</td>
<td>IVB</td>
</tr>
</tbody>
</table>

*Any M1 is stage IVC.*
• HPV-ISH, p16 IHC, and EBER-ISH recommended for all cervical nodes

• If evidence of HPV/ p-16 overexpression: p-16 positive oropharyngeal classification is applied and

• If EBV then nasopharyngeal classification is applied
## UNKNOWN PRIMARY : HPV & EBV Negative

<table>
<thead>
<tr>
<th>When T is...</th>
<th>And N is...</th>
<th>And M is...</th>
<th>Then the stage group is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>N1</td>
<td>M0</td>
<td>III</td>
</tr>
<tr>
<td>T0</td>
<td>N2</td>
<td>M0</td>
<td>IVA</td>
</tr>
<tr>
<td>T0</td>
<td>N3</td>
<td>M0</td>
<td>IVB</td>
</tr>
<tr>
<td>T0</td>
<td>Any N</td>
<td>M1</td>
<td>IVC</td>
</tr>
</tbody>
</table>
NASOPHARYNX N-STAGE

7th edition

REGREGIONAL LYMPH NODES (N)
This site is different from other head and neck sites.
NX  Regional lymph nodes cannot be assessed
N0  No regional lymph node metastasis
N1  Unilateral metastasis in cervical lymph node(s), 6 cm or less in greatest dimension, above the supraclavicular fossa, and/or unilateral or bilateral retropharyngeal lymph nodes, 6 cm or less in greatest dimension
N2  Bilateral metastasis in cervical lymph node(s), 6 cm or less in greatest dimension, above the supraclavicular fossa
N3  Metastasis in lymph node(s) >6 cm and/or to supraclavicular fossa
N3a Greater than 6 cm in dimension
N3b Extension to the supraclavicular fossa

Note: Midline nodes are considered ipsilateral nodes.

8th edition

N - Regional Lymph Nodes (Nasopharynx)

N1  Unilateral metastasis, in cervical lymph node(s), and/or unilateral or bilateral metastasis in retropharyngeal lymph nodes, 6 cm or less in greatest dimension, above the caudal border of cricoid cartilage

N2  Bilateral metastasis in cervical lymph node(s), 6 cm or less in greatest dimension, above the caudal border of cricoid cartilage

N3  Metastasis in cervical lymph node(s) greater than 6 cm in dimension and/or extension below the caudal border of cricoid cartilage

Note
Midline nodes are considered ipsilateral nodes.
(B) replacing the supraclavicular fossa (blue) with the lower neck (i.e., below the caudal border of cricoid cartilage; red) as N3 criteria
SUMMARY

• The evolution of neck dissection presents a variety of surgical options

• The principles of treating nodal disease remain the same

• Neck dissection following non-surgical treatment requires special consideration
REFERENCES: AJCC 8th Staging

Acknowledgements

- Dr. Tom Robbins: My mentor at UCSD
AHNS 10th International Conference on Head & Neck Cancer

“Survivorship through Quality & Innovation”

JULY 18-22, 2020 • HYATT REGENCY CHICAGO • CHICAGO, ILLINOIS

For more info go to: https://www.ahns.info/meetings/

MEETING LEADERSHIP
AHNS President: Cherie-Ann Nathan, MD
Conference Chair: Robert L. Ferris, MD, PhD
Program Chair: Eben Rosenthal, MD
Proffered Paper Chair: Ellie Maghami, MD
Poster Chair: Maie St. John, MD, PhD