Non-Melanoma Cutaneous Malignancies

Cecelia E. Schmalbach, MD, MSc, FACS

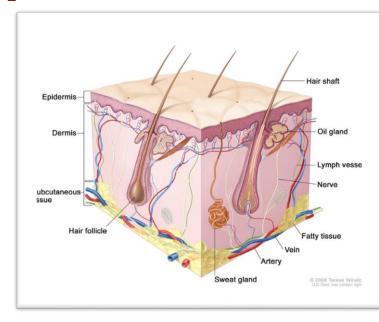
David Myers, MD Professor & Chair

Dept. of Otolaryngology-HNS

Lewis Katz School of Medicine

No Related Financial Disclosures or Conflicts of Interest

The Changing Face of Skin Cancer


The Changing Face of Skin Cancer

Overview

- Skin Cancer Epidemiology
 - Cost
 - Tanning Booths
- Basal Cell Carcinoma (BCC)
- Squamous Cell Carcinoma (cSCC)
- Merkel Cell Carcinoma (MCC)

Non-Melanoma Skin Ca (NMSC)

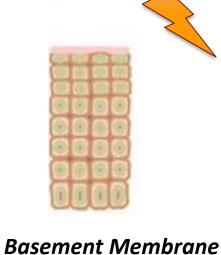
> 80 different histologic types

- Basal Cell Carcinoma (70 75%)
- Squamous Cell Ca (20%)
- Merkel Cell Ca (5%)

NMSC incidence

- BCC
 Most common cancer
 2.8 million cases year
- SCC
 700,000 cases per year
 Incidence increased 200% over past 30 yrs
 (Karia PS, et al. J Am Acad Derm. 2013; 68(6):957)
- 40 50% Americans will have at least one SCC or BCC by age 65 (NCI Cancer Trends 2009/2010)

Non-Melanoma Skin Cancer (NMSC)


- Overall excellent prognosis
 90% 5-yr overall survival
- Subset of aggressive NMSC 10% locally recurrent 3-5% regional metastasis 2,500 deaths per year

Prospective NMSC registries generally lacking

cSCC Tumor Progression

Normal

Pre-cancerous (Actinic Keratosis)

cSCC in situ Invasive cSCC

Tanning Booths

- Ultraviolet Radiation (UVR) = Carcinogen
 Exceeds risk of Lung CA from smoking
- 1,957 ER visits from tanning bed burns
- Skin cancers from Tanning Beds

245,000 ~ BCC

168,000 ~ SCC

6,200 ~ Melanoma

Tanning Booths

- 21 yr old: Tanned 4-5 times per wk
- 1 tanning session
 SCC risk increases 67%
 BCC risk increases 29%
 Melanoma risk inc. 75%
- Outlawed in Brazil, Australia, and New South Wales

Circa 1947

Circa 1960

Coin dropped in slot . . .

. . . turns on sun lamp . . .

Give a June tan for Christmas

Skin Cancer Healthcare Costs

\$8.1 Billion Dollars per year

\$4.8 Billion NMSC \$3.3 Billion Melanoma

I. Management of the Basal Cell Carcinoma (BCC)

BCC/SCC: Risk Stratification

	LOW RISK	HIGH RISK
Location/Size	< 20mm L Zone	≥ 20mm L Zone
	< 10mm M Zone	≥ 10mm M Zone
	< 6mm H Zone	≥ 6mm H Zone
Borders	Well Defined	Poorly Defined
History	Primary Tumor	Recurrent Tumor
Immunosuppression	No	Yes
Prior Radiation	No	Yes
Pathology		BCC: micronodular; infiltrative; sclerosing; morpheophorm
		SCC: adenoid; adenosquamous; desmoplastic
Perinerual /Vascular Invasion	No	Yes

Work-up: BCCA

 Complete history & physical Full body exam

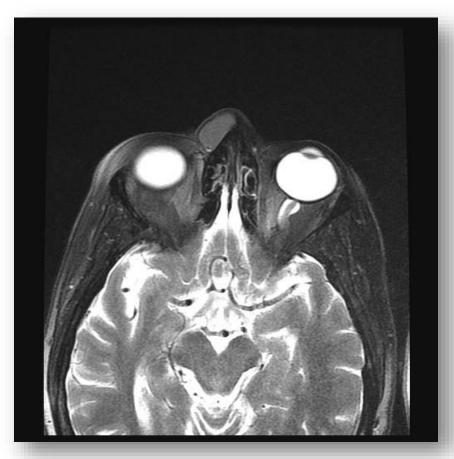
Biopsy

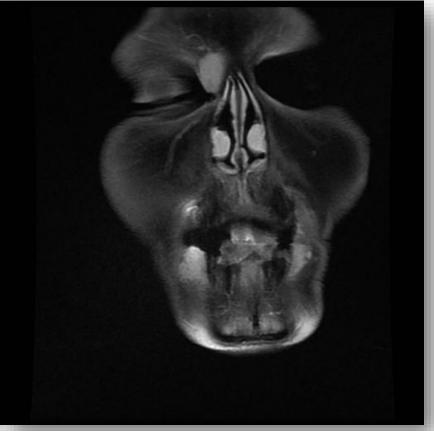
If more than superficial, inclusion of deep reticular dermis preferred

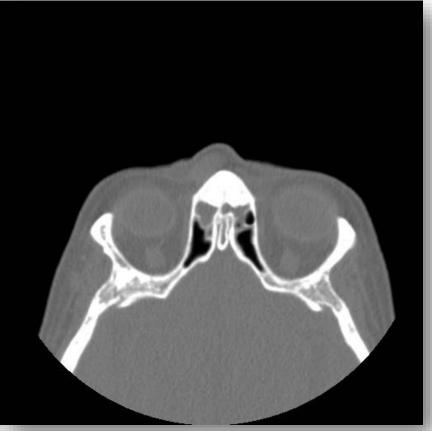
Imaging studies as indicated for extensive disease

High Risk BCC Treatment

High-Risk


- Primary Excision (1 cm margin)
- MOHS
- Primary XRT for Non-surgical Candidates
- Systemic Therapy also not an XRT Candidate


I. Management of the Basal Cell Carcinoma (BCC)


BCC: MRI – T2

BCC: CT Orbit

S/P MOHS: All Margins Clear

Local Advancement & FTSG

Advanced Basal Cell Carcinoma (BCC)

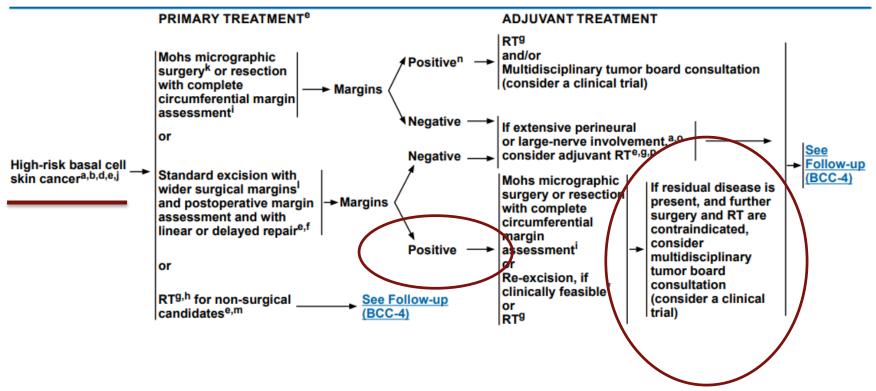
Hedge Hog (Hh) Inhibitor

Vismodegib (Erivedge)

Indications

- Metastatic BCC
- Locally advanced BCC recurring a/f surgery
- Patients who are not surgical/XRT candidates

Vismodegib: Side Effects (150 mg PO QD)

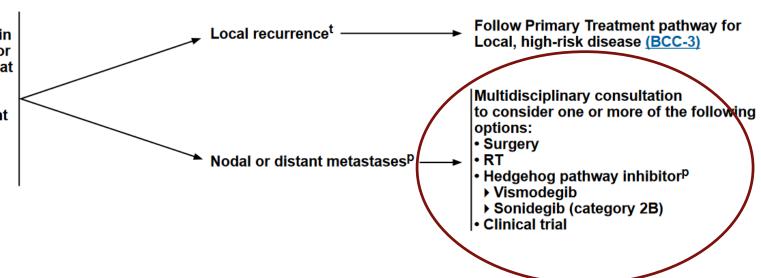

- Arthralgia
- Muscle Cramping
- Hyponatremia

- Alopecia
- Diarrhea
- Fatigue
- Dysguesia/loss appetite/weight loss
- Teratogen****

HHg Inhibitor: Indications

NCCN Guidelines Version 2.2021 Basal Cell Skin Cancer

HHg Inhibitor: Indications



NCCN Guidelines Version 2.2021 Basal Cell Skin Cancer

FOLLOW-UP

RECURRENCE OR ADVANCED DISEASE

- H&P
- Including complete skin exam every 6–12 mo for first 5 years, and then at least annually for life
- Consider imaging if clinical exam insufficient for following disease^t
- Patient education:
 - ▶ Sun protection
 - ▶ Self-examination

78 y.o. demented
male presents
with biopsy
proven advanced
BCC
(present for > 3
yr)

5 Months Vismodegib

Neoadjuvant Vismodegib

June 4, 2014

Newly
Diagnosed
Advanced BCC

Pts not surgical/XRT candidates

Sept 10, 2014

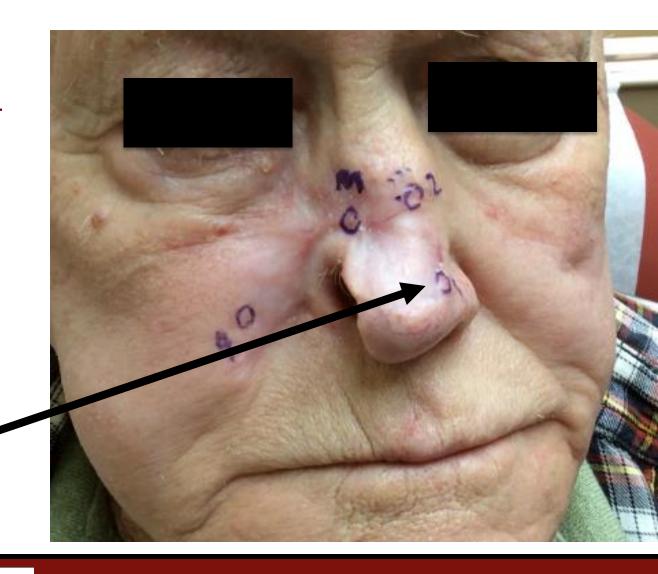
4 wks Neoadjuvant Vismodegib

Oct. 29, 2014

11 wks Neoadjuvant Vismodegib

Nov. 19, 2014

14 wks Neoadjuvant Vismodegib



Jan 28, 2015

24 wks Neoadjuvant vismodegib

> #2, #3, #4 -Scar

> > #1 BCC

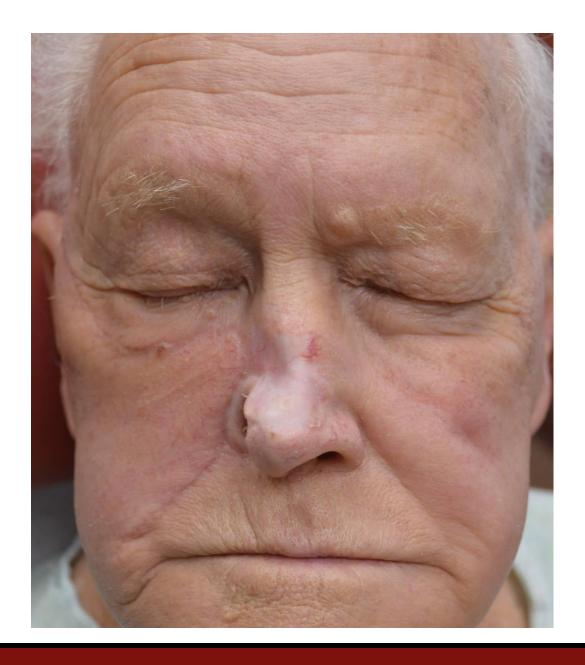
March 10, 2015

30 weeks (7.5 mons) Neoadjuvant Vismodegib

Day of Cheek MOHS

March 10, 2015

MOHS:
Cleared in 1
stage of Mohs


Perm Section pathology:
No BCC

MAY 13, 2015

39 wks Neoadjuvant Vismodegib

Day Nasal MOHS

May 13, 2015

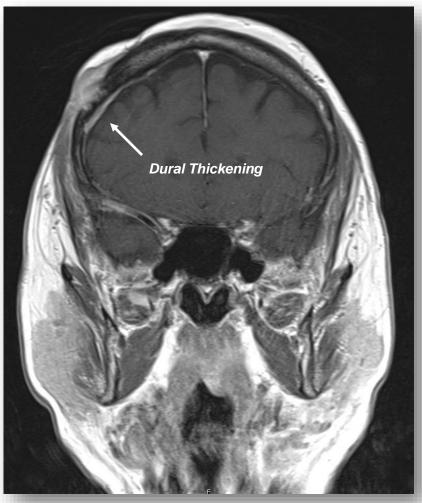
MOHS:
Cleared in 4
stages of Mohs

Perm Section
pathology:
Central Focus
BCC

June 17, 2015

Pre-Vismodegib

7.5 months Post-Vismodegib



73 y.o. Vismodegib, WLE with drilling of calvarium and regional flap, + deep margin and restarted on Vismodegib

MRI with Gadolinium: BCC

Cranial Erosion

Dural Involvement

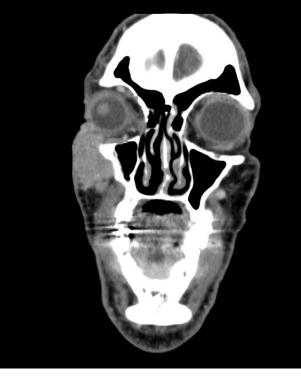
Dural Resection

Mesh & RFFF

3 weeks post-op



9 weeks post-op

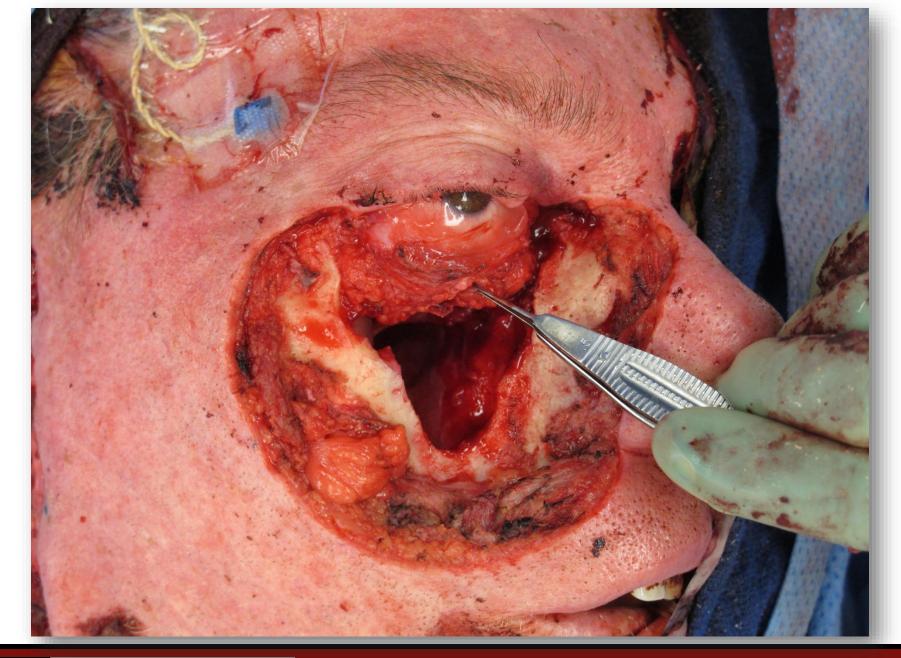


II. Management of the Squamous Cell Carcinoma (SCC)

Advanced cSCC

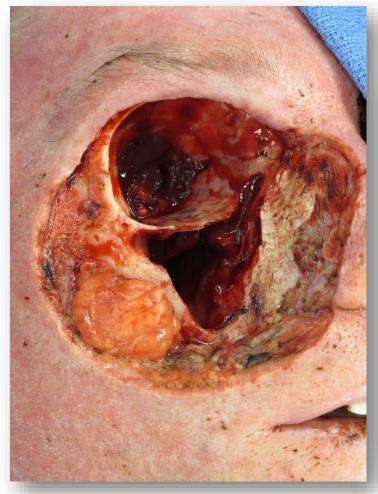
Surgical Management

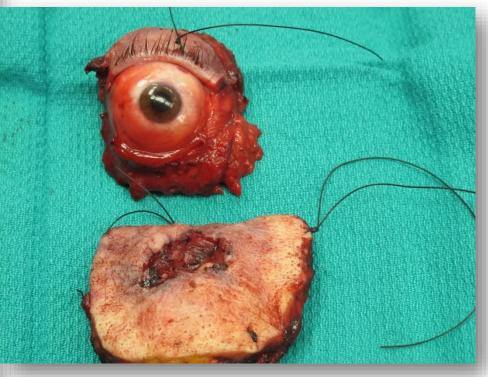



Otolaryngology-HNS Temple University Lewis Katz School of Medicine

When do you Exenterate?

- Intraoperative decision based on FS
- Only when <u>Periorbital FAT</u> is directly invaded.
- Periorbita involvement is not an indication


Perry et al. Preservation of the eye in paranasal sinus cancer surgery.
Arch Otolaryn Head Neck Surg.
1988. Jun; 114(6):632



Otolaryngology-HNS Temple University Lewis Katz School of Medicine

Orbital Exenteration

ALT FF

Final Pathology

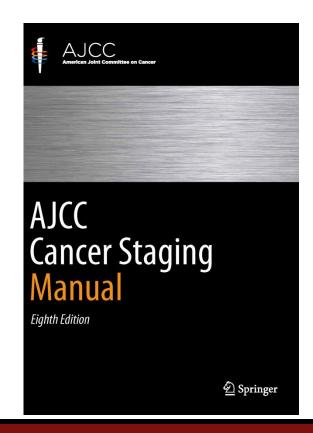
- Invasive cutaneous SCCA (3.3 x 2 cm)
- Perineural invasion
- + Peri-orbital Fat
- All margins negative
- Intra-parotid LN (0/1) negative
- 2 + cervical LN, one with ECS

SCCA Adjuvant Therapy

Primary Tumor XRT

- Positive Margin
- Perineural spread
- Large (named) nerve involvement

Regional Disease

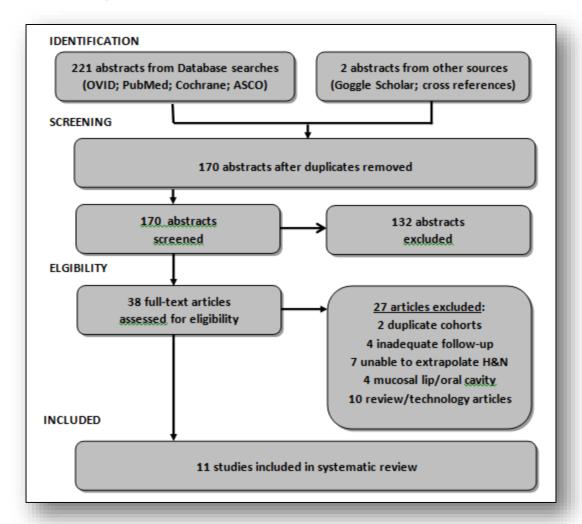

•	1LN ≤ 3cm; no ECS	Optional
---	-------------------	----------

- ≥ 2 LN XRT
- 1 LN > 3cm XRT
- ECS XRT +/- Chemo
- Incomplete excision XRT +/- Chemo

8th Ed AJCC Staging

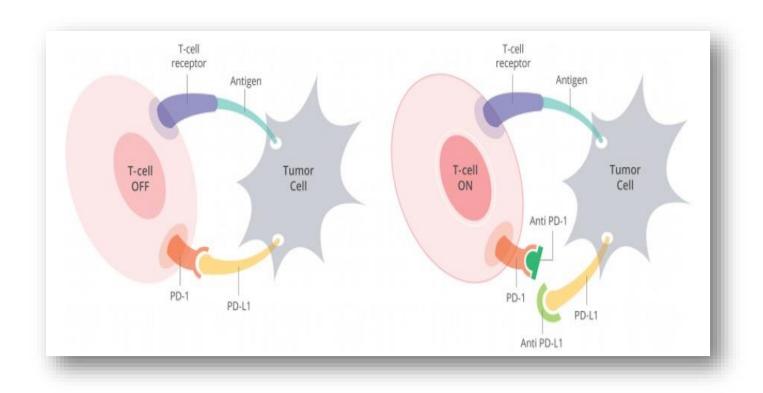
January 2018

- cSCC AJCC Task Force disbanded
 - cSCC now a subcategory in Head & Neck
 - Only applies to H&N
- TNM staging unchanged
 - Tumor diameter
 - Adjacent structure invasion
 - Risk Factors removed



High Risk cSCC Patient

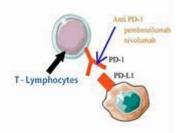
- Poorly defined borders
- Recurrent tumor
- Prior radiation
- Chronic inflammation
- Rapid growth
- Neurologic symptoms
- Pathology
 Adenoid subtype
 Desmoplastic subtype
 Adenosquamous subtype (mucin)
 Perivascular invasion


Utility of SLNB for cSCC

Utility of SLNB for cSCC

Author/Year	Country	No. Pts	No. +SLN Pts	Rate of False Omission [‡] (No. Pts; %)	Median Follow- up (mon.)	SLN Technique [£]
Michl (2003) ¹²	Germany	5	0	0	29	Colloid
Reschly (2003) ¹³	USA	4	1 (25%)	0	14.5	Colloid + Dye
Wagner (2004) ⁸	USA	5	2 (40%)	1 (33%)	14	Colloid + Dye
Nouri (2004) ¹⁴	USA	8	1 (12.5%)	0	18	Colloid
Cecchi (2005) ¹⁵	Italy	2	0	0	22	Colloid + Dye
Civantos (2006) ¹⁶	os (2006) ¹⁶ USA 15 2 (13%		2 (13%)	0	16	Colloid
Sahn (2007) ¹⁷	USA 4		0	0	27.5	NS
Resendez (2007) ¹⁸	Mexico	11	3 (27%)	0	21	Colloid + Dye
Rastrelli (2011) ¹⁹	Italy	11	1 (9%)	2 (20%)	24	Colloid + Dye
Kwon (2011) ²⁰	USA	USA 2 0		0	13.65	Colloid
Demir (2011) ²¹	Demir (2011) ²¹ Turkey 14 0		-	38.5	Colloid	
Total		73	10	3 (4.76%)	21.5	

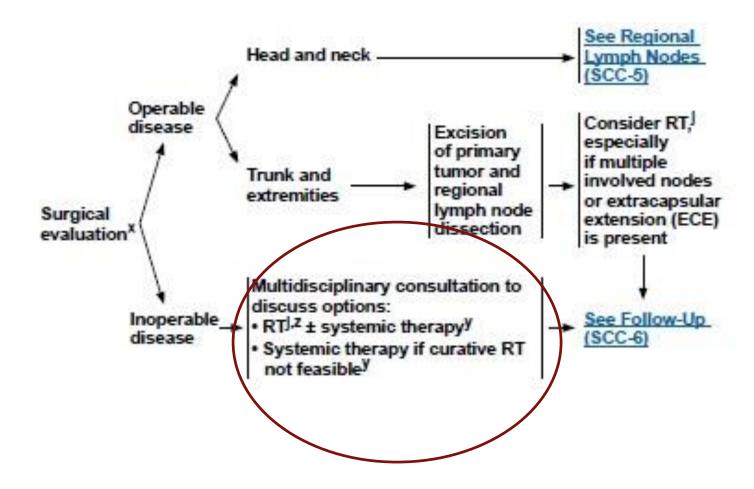
Checkpoint (PD-1) Inhibitors



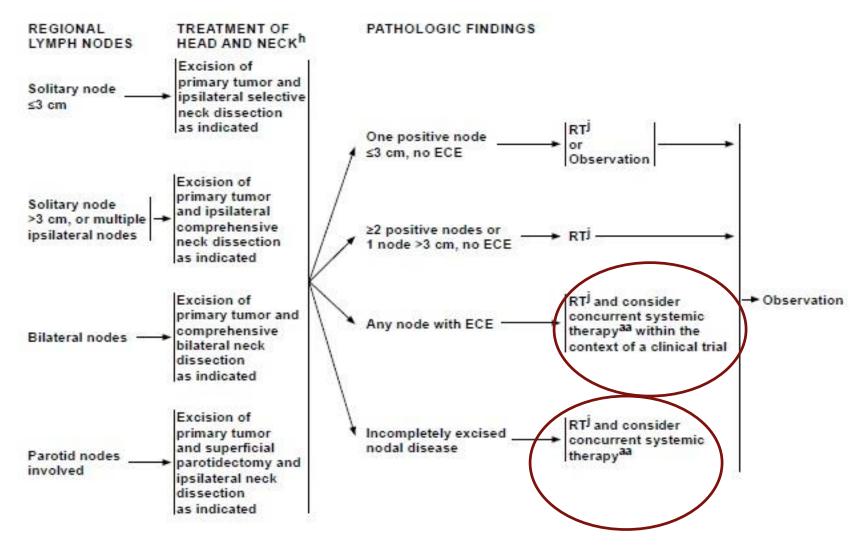
Combat suppression of T cells

Cemiplimab-rwlc

- FDA approved Sept 2018
 - Metastatic cSCC
 - Locally advanced cSCC not candidate for curative surgery or XRT
 - Open-label multi-institutional trials (59pt)
 - Median FU 7.9 mon
 - Objective Response Rate: 47.5% (4% CR; 44% PR)
 - Dz Durable Response Rate: 61% for 6mons
 - Onset 1.9mon



Pembrolizumab


- FDA approved advanced cSCC June 2020
- KEYNOTE-629 (NCT03284424)
- Patients with recurrent or metastatic cSCC not amendable to surgery or XRT
- 105 pt
- FU 11.4 mon
- 34.3% response rate (4 CR)
- 52.4% disease control
- 6.9 mon progression free survival

cSCC Adjuvant Systemic Therapy

cSCC Adjuvant Systemic Therapy

PD-1 Inhibitors for Transplant Pts

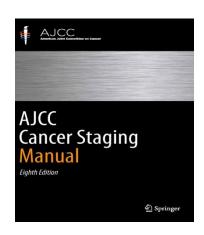
- 50-50 chance of transplant rejection with immune check point inhibitors
 - Fulminant rejection
 - Rapidly fatal
 - Heart, Lung, Liver: no plan B

"Until we better understand how to use checkpoint inhibitors in transplant patients, cetuximab will remain the first-line choice"

~ C.D. Schmults, MD, MSCE, JNCC-360

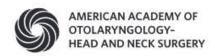
Organ Transplant: Risk Increases x 250

Sagittal Sinus Invasion


8th Ed AJCC Staging January 2018

Strong consideration was given toward including immunosuppression as a risk factor

 Only a single study cited demonstrating relationship between poor outcome and immunosuppression


Brantsch et al. Lancet Oncol. 2008.

Call for prospective cancer registry

OUNDATION

Otolaryngology—
Head and Neck Surgery
2019, Vol. 160(3) 439–446
© American Academy of
Otolaryngology—Head and Neck
Surgery Foundation 2018
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0194599818808511
http://otojournal.org

SSAGE

Immunosuppression Impact on Head and Neck Cutaneous Squamous Cell Carcinoma: A Systematic Review with Meta-analysis

Alhasan N. Elghouche, MD, MS¹, Zachary E. Pflum, MD¹, and Cecelia E. Schmalbach, MD, MSc¹

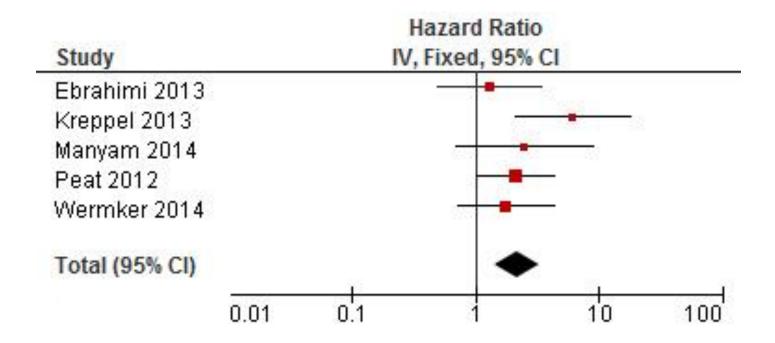
Author (Year)	Country	Dates	Total Patients*	Median Age	Immunosuppress ed patients (%)	Type(s) of Immunosuppression	Median follow- up (months)
Bachar (2016)	Israel	NS	71	NS, mean: 71	6 (8%)	OTR: 6	NS, minimum: 36
Brunner (2012)	Australia	1980 – 2010	603	NS, mean: 70	26 (4%)	NS	25
Ch' ng (2013)	NZ	1978 – 2010	239	68	33 (14%)	NS	37.2
Ebrahimi (2013)	Australia	1980 – 2010	229	98	19 (8%)	NS	45.6
Givi (2011)	USA	1993 – 2007	51	73	11 (22%)	OTR: 5, HM: 6	15
Kreppel (2013)	Germany	2003 – 2009	63	74	9 (14%)	NS	38
Manyam (2014)	USA	2000 – 2011	59	72	21 (36%)	OTR: 12, HM: 8, other: 1	17.7
McLean (2013)	Australia	1980 – 2010	95	NS, mean: 71	6 (6%)	NS	NS
Oddone (2009)	Australia	1980 – 2005	250	67	15 (6%)	OTR: 5, HM: 10	54
Palme (2003)	Australia	1987 – 1999	126	69	18 (14%)	OTR: 4, HM: 6, other: 8	NS, minimum: 24
Peat (2012)	NZ	1996 – 2001	170	NS, mean: 76	15 (9%)	NS	NS, minimum: 60
Schmidt (2015)	Australia	1998 – 2011	113	74	12 (11%)	OTR: 1, HM: 11	40
Shao (2014)	NZ	1989 – 2010	160	NS, mean: 78	28 (18%)	OTR: 10, HM: 16, other: 2	66
Southwell (2016)	Australia	1992 – 2002	49	NS, mean: 72	9 (18%)	OTR: 3, HM: 6	20
Tseros (2016)	Australia	1995 – NS	238	68	19 (8%)	OTR: 11, HM: 7, other: 1	55
Veness (1999)	Australia	1984 – 1995	17	52	17 (100%)	OTR: 17	21.5
Wermker (2014)	Germany	2005 – 2011	353	78	53 (15%)	NS	NS, mean: 43.4

Results

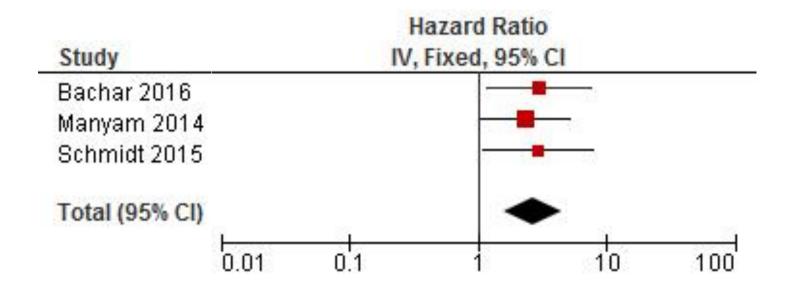
- H&N SCC pts = 2,886
 - 85% male
 - 15% recurrent disease

- Treatment
 - Surgery + XRT (1,553; 74%)
 - Surgery alone (535; 25%)
 - Definitive XRT (21; 1%)

Results: Systematic Review

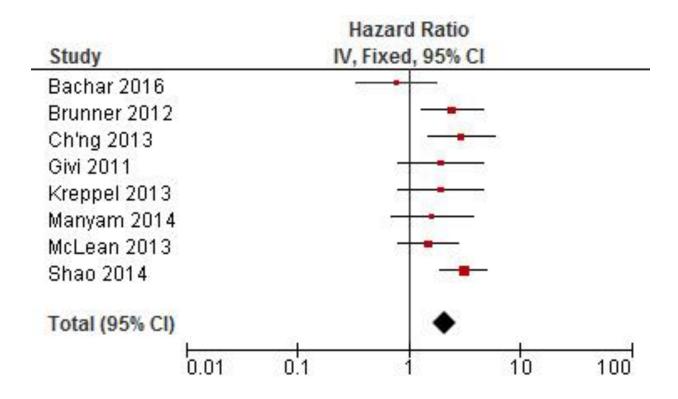

- Immunosuppressed cohort
 - n = 317 (11%)

- Etiology
 - Solid Organ (74; 23%)
 - Lymphoproliferative Disorders (70; 22%)
 - Chronic Immunosuppressive Tx (12; 4%)
 - Not specified (161; 51%)



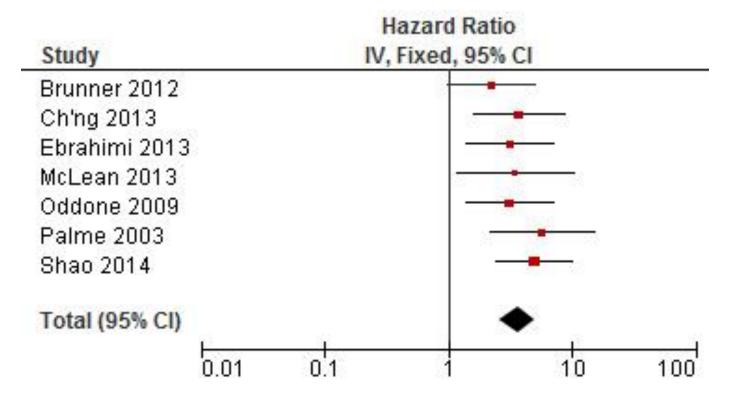
Meta-Analysis Results: Locoregional Recurrence (LRC)

Immunosuppressed pts are 2.20 times more likely to have local or regional failure


Meta-Analysis Results: Disease-Free Survival (DFS)

Immunosuppressed pts demonstrated worse DFS

(Pooled HR: 2.69)


Meta-Analysis Results: Overall Survival (OS)

Immunosuppressed pts demonstrated worse OS

(Pooled HR: 2.09)

Meta-Analysis Results: Disease Specific Survival (DSS)

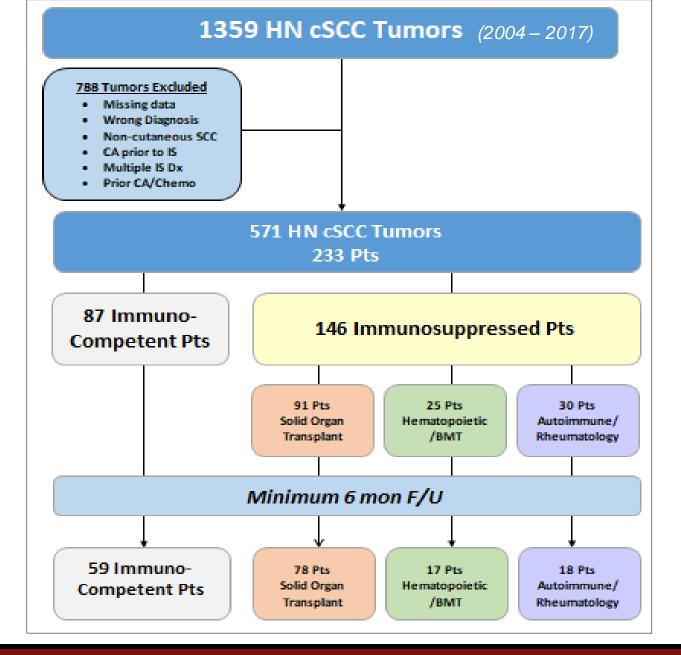
Immunosuppressed pts were 3.61 times more likely to die of their disease

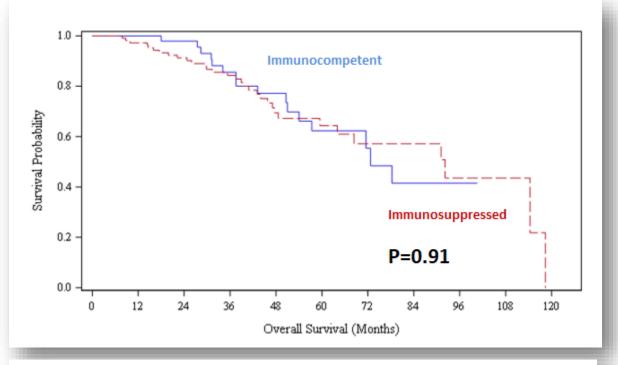
Conclusions

- Largest study of immunosuppressed cSCC H&N cancer patients
- Immunosuppressed cSCC H&N patients portend a:
 - Worse locoregional control rate
 - Worse disease-free survival
 - Worse disease-specific survival
 - Worse overall survival
- Provides scientific need for more comprehensive research and incorporation of immunosuppressed status into cancer staging systems

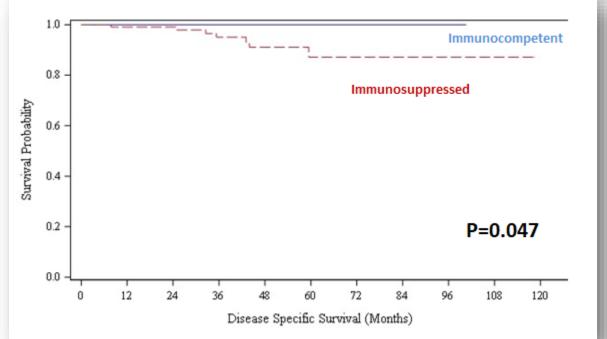
Impact of Immunosuppression on Cutaneous Head & Neck Squamous Cell Carcinoma

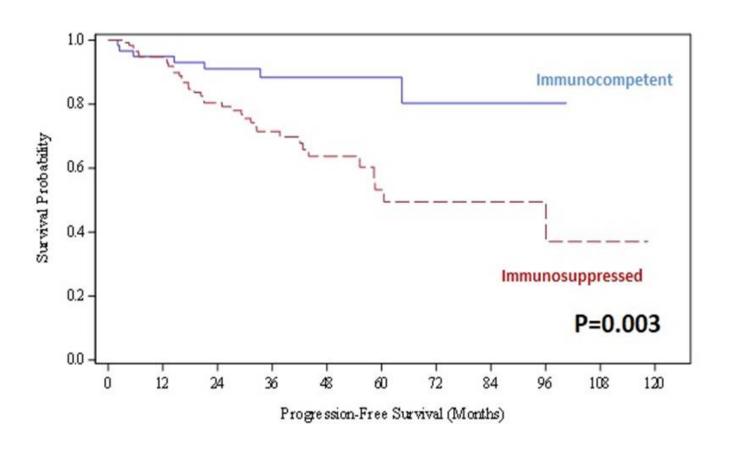
PI: C. Schmalbach, MD, MSc


Research Team: Z. Pflum, MD; Alhasan

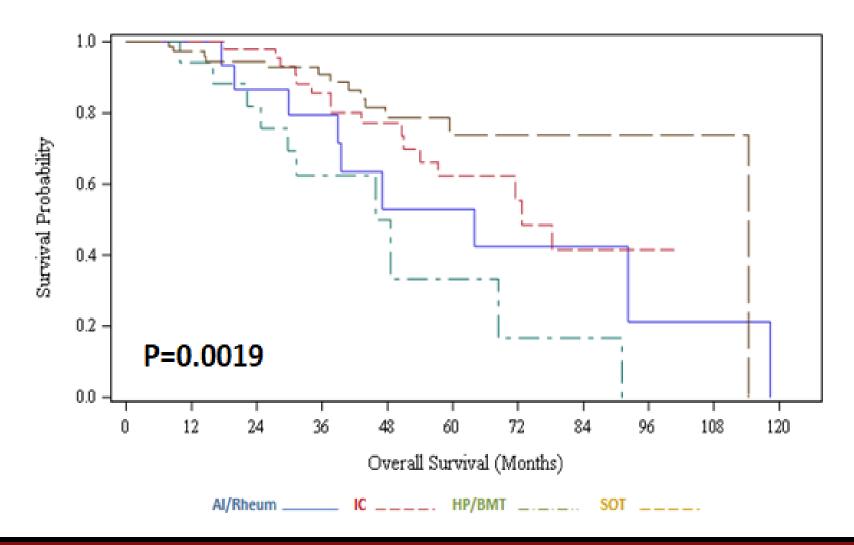

Elghouche, MD, MPH; R. Graham, MD

Biostatistician: D. Yu, PhD, MS

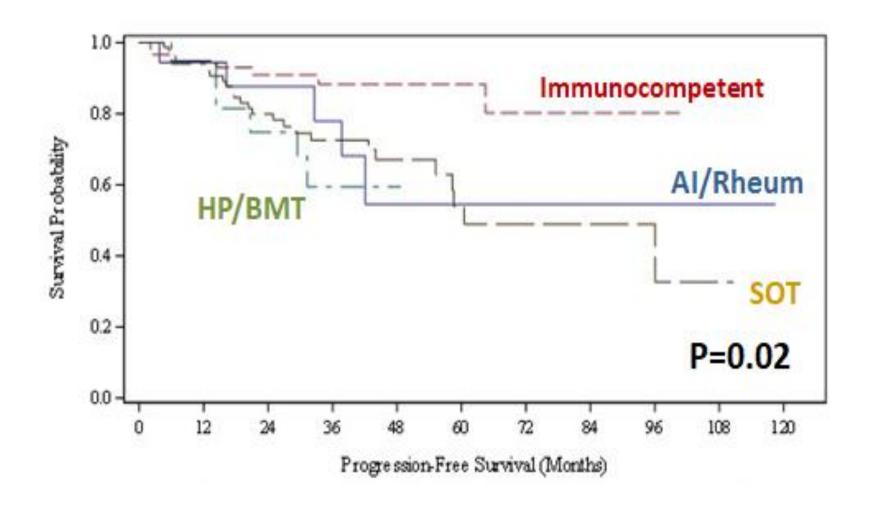




Overall Survival



Disease Specific Survival


Progression Free Survival

Immunosuppression is Not All the Same

Immunosuppression is Not All the Same

Progression Free Survival Best Fit Modeling IS vs IC

Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	P-Value	Hazard Ratio	95% Wald CI
Immuno- suppression	1	1.02007	0.49508	4.2453	0.0394	2.773	1.051, 7.319
Advanced Disease (Stage III & IV)	1	1.84467	0.81083	5.1759	0.0229	6.326	1.291, 30.966
Diameter > 2 cm	1	0.90625	0.34890	6.7466	0.0094	2.475	1.249, 4.904
Recurrent Disease At Presentation	1	1.16874	0.40233	8.4385	0.0037	3.218	1.463, 7.080

Conclusions

- Immunosuppression identified as a significant predictor worse PFS
- Analysis of organ transplantation, hematopoietic, autoimmune and rheumatologic disorders revealed heterogeneous outcomes (SOT portending worst PFS)
- Call for the continuing research and consideration of immune status in future cSCC research and staging systems.

III. Merkel Cell Carcinoma (MCC)

- Elderly
- Merkel cell polyomavirus (MCV)

5-year: 30-64%

Merkel Cell Carcinoma

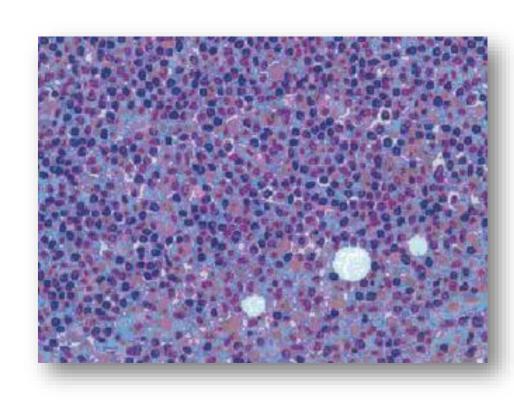
Differential Diagnosis

Merkel Cell Carcinoma

Melanoma

Lymphoma

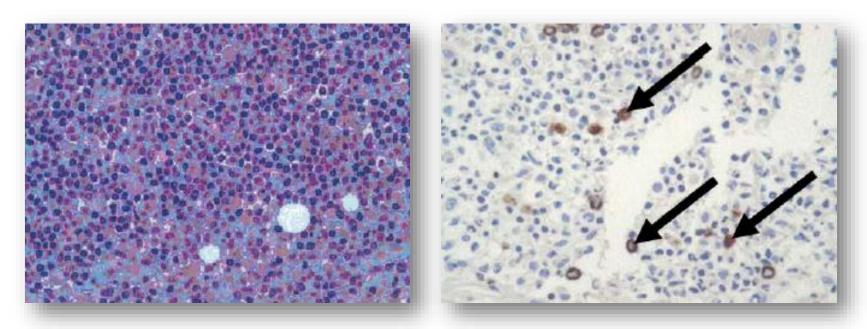
Neuroblastoma


Carcinoid

Metastatic Small Cell Carcinoma of the Lung
Rhabdomyosarcoma

Extraskeletal Ewing's Sarcoma

Primitive Neuroectodermal Tumor (PNET)


Small Round Blue Cells

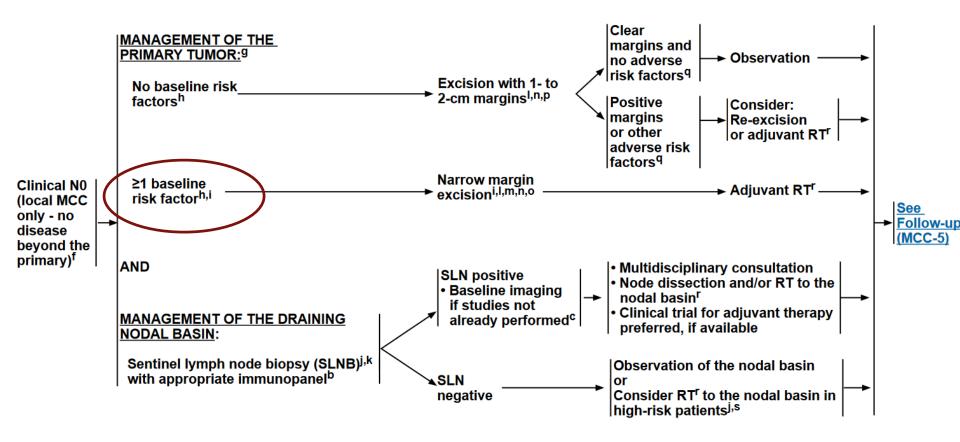
SLN Histologic Evaluation: MCC

H&E Staining
Small Round Blue Cells

CK-20 IHCS

Schmalbach CE, et al. Archives Otolaryngol. 131:610, 2005.

Reliability of SLNB for Regional Staging of H&N MCC


Schmalbach CE, Lowe L, Teknos TN, Johnson TM, Bradford CR. Archives Otolarygol 2005; 131:610

- 10 patients (1995 2003)
- Median F/U: 34.5 months
- SLN identified in 100% Pts (mean: 2.4)
- 2 of 10 pts (20%) had a + SLN
 Both negative on H&E
 Occult metastasis only identified with CK-20
- 1 of 8 (12%) SLN patients recurred regional
 Rate of false omission = 12%
- SLN technique safe and reliable for MCC

MERKEL CELL CARCINOMA 1.2020

PRIMARY AND ADJUVANT TREATMENT OF CLINICAL NO DISEASE

MERKEL CELL CARCINOMA 1.2020

Clinically N-Zero

- Narrow Margin Excision
- SLNBx

Considered the most sensitive staging technique

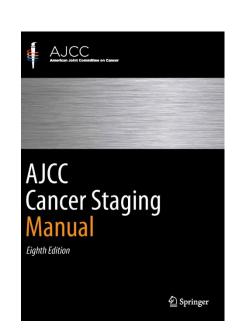
Clinically N-Positive

WLE

- Therapeutic Neck Dissection and/or radiation therapy
- To consider Chemotherapy

<u>Distant Metastasis</u>

- Supportive Care
- T/C Surgery, Radiation, and/or Chemotherapy


8th Ed. MCC Staging (2018)

Primary Tumor Stage Features

- Tx Tumor cannot be assessed
- T0 No evidence of primary tumor
- Tis *In situ* primary tumor
- T1 2 cm in maximum dimension
- T2 > 2 cm but ≤ 5cm in maximum dimension
- T3 > 5cm in maximum dimension
- T4 Tumor invades extracutaneous structures

Fascia; Muscle; Cartilage; Bone

MCC Staging

Regional Lymph Nodes

Nx Nodes cannot be assessed

cN0 No regional lymph nodes on clinical or radiographic exam

pN0 No regional lymph node metastases on pathologic exam

N1a Micrometastasis (SLNB)

N1b Macrometastasis

N2 In transit metastasis without LN metastasis

N3 In transit metastasis with LN metastasis

Distant Metastases

M0 No distant metastasis

M1a Metastasis to skin, subcutaneous tissues, or distant LN

M1b Metastasis to lung

M2b Metastasis to all other visceral sites

Key Pearls

Skin Cancer Epidemic

Ultraviolet (UV) is a carcinogen

Basal Cell Carcinoma

Hedgehog Inhibitors for advanced disease

cSCC

- Formal staging disbanded
- Immunosuppressed population behaves differently
- Orbital exenteration for periorbital fat involvement
- SLNB promising but investigational

Merkel Cell Carcinoma

- Elderly; Poor Prognosis
- Small round blue cells (CK-20+; TTF-1 negative)
- SLNB standard of care

